Package 'AgroReg'

Title: Regression Analysis Linear and Nonlinear for Agriculture
Description: Linear and nonlinear regression analysis common in agricultural science articles (Archontoulis & Miguez (2015). <doi:10.2134/agronj2012.0506>). The package includes polynomial, exponential, gaussian, logistic, logarithmic, segmented, non-parametric models, among others. The functions return the model coefficients and their respective p values, coefficient of determination, root mean square error, AIC, BIC, as well as graphs with the equations automatically.
Authors: Gabriel Danilo Shimizu [aut, cre] , Leandro Simoes Azeredo Goncalves [aut, ctb]
Maintainer: Gabriel Danilo Shimizu <[email protected]>
License: GPL (>= 2)
Version: 1.2.10
Built: 2024-11-20 05:06:52 UTC
Source: https://github.com/cran/AgroReg

Help Index


Utils: Adjust y and x scale

Description

Adjust y and x scale for chart or charts

Usage

adjust_scale(
  plots,
  scale.x = "default",
  limits.x = "default",
  scale.y = "default",
  limits.y = "default"
)

Arguments

plots

Object of analysis or plot_arrange

scale.x

x-axis scale (use vector)

limits.x

limits in x-axis (use vector)

scale.y

y-axis scale (use vector)

limits.y

limits in y-axis (use vector)

Value

Returns the scaled graph

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
a=LM(trat,resp)
b=LL(trat,resp,npar = "LL.3")
a=plot_arrange(list(a,b),gray = TRUE)
adjust_scale(a,scale.y = seq(0,100,10),limits.y = c(0,100))

Utils: Adjust x scale

Description

Adjust x scale for chart or charts

Usage

adjust_scale_x(plots, scale = "default", limits = "default")

Arguments

plots

Object of analysis or plot_arrange

scale

x-axis scale (use vector)

limits

limits in x-axis (use vector)

Value

Returns the scaled graph

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
a=LM(trat,resp)
b=LL(trat,resp,npar = "LL.3")
a=plot_arrange(list(a,b),gray = TRUE)
adjust_scale_x(a,scale = seq(10,40,5),limits = c(10,40))

Utils: Adjust y scale

Description

Adjust y scale for chart or charts

Usage

adjust_scale_y(plots, scale = "default", limits = "default")

Arguments

plots

Object of analysis or plot_arrange

scale

y-axis scale (use vector)

limits

limits in y-axis (use vector)

Value

Returns the scaled graph

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
a=LM(trat,resp)
b=LL(trat,resp,npar = "LL.3")
a=plot_arrange(list(a,b),gray = TRUE)
adjust_scale_y(a,scale = seq(0,100,10),limits = c(0,100))

Analysis: Avhad and Marchetti

Description

This function performs Avhad and Marchetti regression analysis.

Usage

AM(
  trat,
  resp,
  initial = list(alpha, k, n),
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

Starting estimates

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The Avhad e Marchetti model is defined by:

y=α×ekxny = \alpha \times e^{kx^n}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Avhad, M. R., & Marchetti, J. M. (2016). Mathematical modelling of the drying kinetics of Hass avocado seeds. Industrial Crops and Products, 91, 76-87.

Examples

library(AgroReg)
data("granada")
attach(granada)
AM(time,100-WL,initial=list(alpha = 610.9129, k=-1.1810, n=0.1289 ))

Dataset: Aristolochia

Description

The data come from an experiment conducted at the Seed Analysis Laboratory of the Agricultural Sciences Center of the State University of Londrina, in which five temperatures (15, 20, 25, 30 and 35C) were evaluated in the germination of Aristolochia elegans. The experiment was conducted in a completely randomized design with four replications of 25 seeds each.

Usage

data("aristolochia")

Format

data.frame containing data set

trat

Numeric vector with temperature

resp

Numeric vector with response

Author(s)

Hugo Roldi Guariz

Examples

data(aristolochia)

Analysis: Asymptotic, exponential or Logarithmic

Description

This function performs asymptotic regression analysis.

Usage

asymptotic(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The exponential model is defined by:

y=α×eβx+θy = \alpha \times e^{-\beta \cdot x} + \theta

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).

Examples

library(AgroReg)
data("granada")
attach(granada)
asymptotic(time,100-WL)

Analysis: Asymptotic without intercept

Description

This function performs asymptotic regression analysis without intercept.

Usage

asymptotic_i(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  fontfamily = "sans",
  comment = NA
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

fontfamily

Font family

comment

Add text after equation

Details

The asymptotic model without intercept is defined by:

y=α×eβxy = \alpha \times e^{-\beta \cdot x}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).

Siqueira, V. C., Resende, O., & Chaves, T. H. (2013). Mathematical modelling of the drying of jatropha fruit: an empirical comparison. Revista Ciencia Agronomica, 44, 278-285.

Examples

library(AgroReg)
data("granada")
attach(granada)
asymptotic_i(time,100-WL)

Analysis: Asymptotic or Exponential Negative without intercept

Description

This function performs asymptotic regression analysis without intercept.

Usage

asymptotic_ineg(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The asymptotic negative model without intercept is defined by:

y=α×eβxy = \alpha \times e^{-\beta \cdot x}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Siqueira, V. C., Resende, O., & Chaves, T. H. (2013). Mathematical modelling of the drying of jatropha fruit: an empirical comparison. Revista Ciencia Agronomica, 44, 278-285.

Examples

library(AgroReg)
data("granada")
attach(granada)
asymptotic_ineg(time,100-WL)

Analysis: Asymptotic or Exponential Negative

Description

This function performs asymptotic regression analysis.

Usage

asymptotic_neg(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The asymptotic model is defined by:

y=α×eβx+θy = -\alpha \times e^{-\beta \cdot x}+\theta

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

library(AgroReg)
data("granada")
attach(granada)
asymptotic_neg(time,WL)

Analysis: Brain-Cousens

Description

The 'BC.4' and 'BC.5' logistical models provide Brain-Cousens' modified logistical models to describe u-shaped hormesis. This model was extracted from the 'drc' package.

Usage

BC(
  trat,
  resp,
  npar = "BC.4",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

Number of model parameters (default is BC.4)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

Legend position (default is "top")

r2

Coefficient of determination of the mean or all values (default is all)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

error

Error bar (It can be SE - default, SD or FALSE)

point

Defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

Shape size

linesize

Line size

linetype

line type

pointshape

Format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The model function for the Brain-Cousens model (Brain and Cousens, 1989) is

y=c+dc+fx1+exp(b(log(x)log(e)))y = c + \frac{d-c+fx}{1+\exp(b(\log(x)-\log(e)))}

and it is a five-parameter model, obtained by extending the four-parameter log-logistic model (LL.4 to take into account inverse u-shaped hormesis effects. Fixing the lower limit at 0 yields the four-parameter model

y=0+d0+fx1+exp(b(log(x)log(e)))y = 0 + \frac{d-0+fx}{1+\exp(b(\log(x)-\log(e)))}

used by van Ewijk and Hoekstra (1993).

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Ritz, C.; Strebig, J.C. and Ritz, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.

See Also

LL, CD,GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
BC(trat,resp)

Analysis: Beta

Description

This function performs beta regression analysis.

Usage

beta_reg(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

Legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

Coefficient of determination of the mean or all values (default is all)

point

Defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

Shape size

linesize

Line size

linetype

line type

pointshape

Format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The beta model is defined by:

Y=d×{(XXbXoXb)(XcXXcXo)XcXoXoXb}bY = d \times \{(\frac{X-X_b}{X_o-X_b})(\frac{X_c-X}{X_c-X_o})^{\frac{X_c-X_o}{X_o-X_b}}\}^b

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Andrea Onofri)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Onofri, A., 2020. The broken bridge between biologists and statisticians: a blog and R package. Statforbiology. http://www.statforbiology.com/tags/aomisc/

Examples

library(AgroReg)
X <- c(1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50)
Y <- c(0, 0, 0, 7.7, 12.3, 19.7, 22.4, 20.3, 6.6, 0, 0)
beta_reg(X,Y)

Analysis: Biexponential

Description

This function performs biexponential regression analysis.

Usage

biexponential(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

Legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

Coefficient of determination of the mean or all values (default is all)

point

Defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

Shape size

linesize

Line size

linetype

line type

pointshape

Format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The biexponential model is defined by:

y=A1×eelrc1x+A2×eelrc2xy = A1 \times e^{-e^{lrc1 \cdot x}} + A2 \times e^{-e^{lrc2 \cdot x}}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

See Also

asymptotic_neg

Examples

library(AgroReg)
data("granada")
attach(granada)
biexponential(time,WL)

Analysis: Cedergreen-Ritz-Streibig

Description

The 'CRS.4' and 'CRS.5' logistical models provide Brain-Cousens modified logistical models to describe u-shaped hormesis. This model was extracted from the 'drc' package.

Usage

CD(
  trat,
  resp,
  npar = "CRS.4",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

Number of model parameters

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The four-parameter model is given by the expression:

y=0+d0+fexp(1/x)1+exp(b(log(x)log(e)))y = 0 + \frac{d-0+f \exp(-1/x)}{1+\exp(b(\log(x)-\log(e)))}

while the five-parameter is:

y=c+dc+fexp(1/x)1+exp(b(log(x)log(e)))y = c + \frac{d-c+f \exp(-1/x)}{1+\exp(b(\log(x)-\log(e)))}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Ritz, C.; Strebig, J.C.; Ritz, M.C. Package 'drc'. Creative Commons: Mountain View, CA, USA, 2016.

See Also

LL, BC, GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
CD(trat,resp)

Change the colors of a graph from the plot_arrange function

Description

Change the colors of a graph from the plot_arrange function

Usage

coloredit_arrange(graphs, color = NA)

Arguments

graphs

object from a plot_arrange function

color

color curve and point

Value

The function changes the colors of a graph coming from the plot_arrange function

Author(s)

Gabriel Danilo Shimizu

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
graph1=LM(trat,resp)
graph2=LL(trat,resp,npar = "LL.3")
graph=plot_arrange(list(graph1,graph2))
coloredit_arrange(graph,color=c("red","blue"))

Analysis: Comparative models

Description

This function allows the construction of a table and/or graph with the statistical parameters to choose the model from the analysis functions.

Usage

comparative_model(models, names_model = NA, plot = FALSE, round.label = 2)

Arguments

models

List with objects of type analysis

names_model

Names of the models

plot

Plot in the parameters

round.label

Round label plot

Value

Returns a table and/or graph with the statistical parameters for choosing the model.

Author(s)

Gabriel Danilo Shimizu


Graph: Plot correlation

Description

Correlation analysis function (Pearson or Spearman)

Usage

correlation(
  x,
  y,
  method = "pearson",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  textsize = 12,
  pointsize = 5,
  pointshape = 21,
  linesize = 0.8,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  ic = TRUE,
  title = NA,
  fontfamily = "sans"
)

Arguments

x

Numeric vector with independent variable

y

Numeric vector with dependent variable

method

Method correlation (default is Pearson)

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

textsize

Axis text size

pointsize

Point size

pointshape

shape format

linesize

line size

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

ic

Add interval of confidence

title

title

fontfamily

Font family

Value

The function returns a graph for correlation

Author(s)

Gabriel Danilo Shimizu, [email protected]

Leandro Simoes Azeredo Goncalves

Examples

data("aristolochia")
with(aristolochia, correlation(trat,resp))

Analysis: Extract models

Description

This function allows extracting the model (type="model") or residuals (type="resids"). The model class depends on the function and can be (lm, drm or nls). This function also allows you to perform graphical analysis of residuals (type="residplot"), graphical analysis of standardized residuals (type="stdresidplot"), graph of theoretical quantiles (type="qqplot").

Usage

extract.model(model, type = "model")

Arguments

model

Object returned from an analysis function

type

output type

Value

Returns an object of class drm, lm or nls (type="model"), or vector of residuals (type="resids"), or graph of the residuals (type="residplot", type="stdresidplot", type=" qqplot").

Examples

data("aristolochia")
attach(aristolochia)
a=linear.linear(trat,resp,point = "mean")
extract.model(a,type = "qqplot")

Analysis: Analogous to the Gaussian model/Bragg

Description

Analysis: Analogous to the Gaussian model/Bragg

Usage

gaussianreg(
  trat,
  resp,
  npar = "g3",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  error = "SE",
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

number of parameters (g3 or g4)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

error

Error bar (It can be SE - default, SD or FALSE)

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The model analogous to the three-parameter Gaussian is:

y=d×eb((xe)2)y = d \times e^{-b((x-e)^2)}

The model analogous to the three-parameter Gaussian is:

y=d×c+(dc)eb((xe)2)y = d \times c+(d-c)*e^{-b((x-e)^2)}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
gaussianreg(trat,resp)

Analysis: Gompertz

Description

The logistical models provide Gompertz modified logistical models. This model was extracted from the 'drc' package.

Usage

GP(
  trat,
  resp,
  npar = "g2",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

Number os parameters (g2, g3 or g4)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

error

Error bar (It can be SE - default, SD or FALSE)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The two-parameter Gompertz model is given by the function:

y=expexpb(xe)y = exp^{-exp^{b(x-e)}}

The three-parameter Gompertz model is given by the function:

y=d×expexpb(xe)y = d \times exp^{-exp^{b(x-e)}}

The four-parameter Gompertz model is given by the function:

y=c+(dc)(expexpb(xe))y = c + (d-c)(exp^{-exp^{b(x-e)}})

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).

Ritz, C.; Strebig, J.C. and Ritz, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.

See Also

LL, CD, BC

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
GP(trat,resp, npar="g3")

Dataset: Granada

Description

The data are part of an experiment that studied the drying kinetics of pomegranate peel over time under an air-circulation oven. Mass loss was assessed.

Usage

data("granada")

Format

data.frame containing data set

time

numeric vector with times

WL

Numeric vector with response

Author(s)

Gabriel Danilo Shimizu

Examples

data(granada)

Analysis: Hill

Description

This function performs regression analysis using the Hill model.

Usage

hill(
  trat,
  resp,
  sample.curve = 1000,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  point = "all",
  width.bar = NA,
  r2 = "all",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

error

Error bar (It can be SE - default, SD or FALSE)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

r2

coefficient of determination of the mean or all values (default is all)

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The Hill model is defined by:

y=a×xcb+xcy = \frac{a \times x^c}{b+x^c}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Onofri, 2020)

Gabriel Danilo Shimizu

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Onofri A. (2020) The broken bridge between biologists and statisticians: a blog and R package, Statforbiology, IT, web: https://www.statforbiology.com

Examples

data("granada")
attach(granada)
hill(time,WL)

Analysis: Interval of confidence

Description

Interval of confidence in model regression

Usage

interval.confidence(model)

Arguments

model

Object analysis

Value

Return in the interval of confidence

Author(s)

Gabriel Danilo Shimizu

Examples

data("granada")
attach(granada)
a=LM(time, WL)
interval.confidence(a)

Analysis: Linear-Linear

Description

This function performs linear linear regression analysis.

Usage

linear.linear(
  trat,
  resp,
  middle = 1,
  CI = FALSE,
  bootstrap.samples = 1000,
  sig.level = 0.05,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  point = "all",
  width.bar = NA,
  legend.position = "top",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

middle

A scalar in [0,1]. This represents the range that the change-point can occur in. 0 means the change-point must occur at the middle of the range of x-values. 1 means that the change-point can occur anywhere along the range of the x-values.

CI

Whether or not a bootstrap confidence interval should be calculated. Defaults to FALSE because the interval takes a non-trivial amount of time to calculate

bootstrap.samples

The number of bootstrap samples to take when calculating the CI.

sig.level

What significance level to use for the confidence intervals.

error

Error bar (It can be SE - default, SD or FALSE)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

legend.position

legend position (default is "top")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The linear-linear model is defined by: First curve:

y=β0+β1×x(x<breakpoint)y = \beta_0 + \beta_1 \times x (x < breakpoint)

Second curve:

y=β0+β1×breakpoint+w×x(x>breakpoint)y = \beta_0 + \beta_1 \times breakpoint + w \times x (x > breakpoint)

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); breakpoint and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the SiZer package

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Chiu, G. S., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American Statistical Association 101:542-553.

Toms, J. D., and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.

See Also

quadratic.plateau, linear.plateau

Examples

library(AgroReg)
data("granada")
attach(granada)
linear.linear(time,WL)

Analysis: Linear-Plateau

Description

This function performs the linear-plateau regression analysis.

Usage

linear.plateau(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The linear-plateau model is defined by: First curve:

y=β0+β1×x(x<breakpoint)y = \beta_0 + \beta_1 \times x (x < breakpoint)

Second curve:

y=β0+β1×breakpoint(x>breakpoint)y = \beta_0 + \beta_1 \times breakpoint (x > breakpoint)

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); breakpoint and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Chiu, G. S., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American Statistical Association 101:542-553.

Toms, J. D., and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.

See Also

quadratic.plateau, linear.linear

Examples

library(AgroReg)
data("granada")
attach(granada)
linear.plateau(time,WL)

Analysis: Log-logistic

Description

Logistic models with three (LL.3), four (LL.4) or five (LL.5) continuous data parameters. This model was extracted from the drc package.

Usage

LL(
  trat,
  resp,
  npar = "LL.3",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

Number of model parameters

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The three-parameter log-logistic function with lower limit 0 is

y=0+d1+exp(b(log(x)log(e)))y = 0 + \frac{d}{1+\exp(b(\log(x)-\log(e)))}

The four-parameter log-logistic function is given by the expression

y=c+dc1+exp(b(log(x)log(e)))y = c + \frac{d-c}{1+\exp(b(\log(x)-\log(e)))}

The function is symmetric about the inflection point (e).

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Ritz, C.; Strebig, J.C.; Ritz, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
LL(trat,resp)

Analysis: Linear, quadratic, quadratic inverse, cubic and quartic

Description

Linear, quadratic, quadratic inverse, cubic and quartic regression.

Usage

LM(
  trat,
  resp,
  degree = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  error = "SE",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  point = "all",
  r2 = "all",
  theme = theme_classic(),
  legend.position = "top",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

degree

degree of the polynomial (0.5, 1, 2, 3 or 4)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Dependent variable name (Accepts the expression() function)

xlab

Independent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

point

defines whether you want to plot all points ("all") or only the mean ("mean")

r2

coefficient of determination of the mean or all values (default is all)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The linear model is defined by:

y=β0+β1xy = \beta_0 + \beta_1\cdot x

The quadratic model is defined by:

y=β0+β1x+β2x2y = \beta_0 + \beta_1\cdot x + \beta_2\cdot x^2

The quadratic inverse model is defined by:

y=β0+β1x+β2x0.5y = \beta_0 + \beta_1\cdot x + \beta_2\cdot x^{0.5}

The cubic model is defined by:

y=β0+β1x+β2x2+β3x3y = \beta_0 + \beta_1\cdot x + \beta_2\cdot x^2 + \beta_3\cdot x^3

The quartic model is defined by:

y=β0+β1x+β2x2+β3x3+β4x4y = \beta_0 + \beta_1\cdot x + \beta_2\cdot x^2 + \beta_3\cdot x^3+ \beta_4\cdot x^4

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
LM(trat,resp, degree = 3)

Analysis: Linear, quadratic, quadratic inverse, cubic and quartic without intercept

Description

Linear, quadratic, quadratic inverse, cubic and quartic regression.

Usage

LM_i(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  xlab = "Independent",
  degree = NA,
  theme = theme_classic(),
  legend.position = "top",
  point = "all",
  r2 = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Dependent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

xlab

Independent variable name (Accepts the expression() function)

degree

degree of the polynomial (0.5, 1, 2, 3 or 4)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

point

defines whether you want to plot all points ("all") or only the mean ("mean")

r2

coefficient of determination of the mean or all values (default is all)

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The linear model is defined by:

y=β1xy = \beta_1\cdot x

The quadratic model is defined by:

y=β1x+β2x2y = \beta_1\cdot x + \beta_2\cdot x^2

The quadratic inverse model is defined by:

y=β1x+β2x0.5y = \beta_1\cdot x + \beta_2\cdot x^{0.5}

The cubic model is defined by:

y=β1x+β2x2+β3x3y = \beta_1\cdot x + \beta_2\cdot x^2 + \beta_3\cdot x^3

The quartic model is defined by:

y=β1x+β2x2+β3x3+β4x4y = \beta_1\cdot x + \beta_2\cdot x^2 + \beta_3\cdot x^3+ \beta_4\cdot x^4

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
LM_i(trat,resp, degree = 3)

Analysis: Cubic without beta2

Description

Degree 3 polynomial model without the beta 2 coefficient.

Usage

LM13(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Dependent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

xlab

Independent variable name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

Degree 3 polynomial model without the beta 2 coefficient is defined by:

y=β0+β1x+β3x3y = \beta_0 + \beta_1\cdot x + \beta_3\cdot x^{3}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
LM13(time, WL)

Analysis: Cubic inverse without beta2

Description

Degree 3 polynomial inverse model without the beta 2 coefficient.

Usage

LM13i(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Dependent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

xlab

Independent variable name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

Inverse degree 3 polynomial model without the beta 2 coefficient is defined by:

y=β0+β1x+β3x1/3y = \beta_0 + \beta_1\cdot x + \beta_3\cdot x^{1/3}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
LM13i(time, WL)

Analysis: Cubic without beta1

Description

Degree 3 polynomial model without the beta 1 coefficient.

Usage

LM23(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Dependent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

xlab

Independent variable name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

Degree 3 polynomial model without the beta 2 coefficient is defined by:

y=β0+β2x2+β3x3y = \beta_0 + \beta_2\cdot x^2 + \beta_3\cdot x^{3}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
LM23(time, WL)

Analysis: Cubic inverse without beta1

Description

Degree 3 polynomial inverse model without the beta 1 coefficient.

Usage

LM23i(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Dependent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

xlab

Independent variable name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

Inverse degree 3 polynomial model without the beta 1 coefficient is defined by:

y=β0+β2x1/2+β3x1/3y = \beta_0 + \beta_2\cdot x^{1/2} + \beta_3\cdot x^{1/3}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
LM23i(time, WL)

Analysis: Cubic without beta1, with inverse beta3

Description

Degree 3 polynomial model without the beta 1 coefficient, with inverse beta3.

Usage

LM2i3(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Dependent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

xlab

Independent variable name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

Inverse degree 3 polynomial model without the beta 2 coefficient is defined by:

y=β0+β1x2+β3x1/3y = \beta_0 + \beta_1\cdot x^2 + \beta_3\cdot x^{1/3}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
LM2i3(time, WL)

Analysis: loess regression (degree 0, 1 or 2)

Description

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

Usage

loessreg(
  trat,
  resp,
  degree = 2,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

degree

Degree polynomial (0,1 or 2)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is c(0.3,0.8))

error

Error bar (It can be SE - default, SD or FALSE)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

fontfamily

Font family

Value

The function returns a list containing the loess regression and graph using ggplot2.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

See Also

loess

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
loessreg(trat,resp)

Analysis: Logarithmic

Description

This function performs logarithmic regression analysis.

Usage

LOG(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is c(0.3,0.8))

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The logarithmic model is defined by:

y=β0+β1ln(x)y = \beta_0 + \beta_1 ln(\cdot x)

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

library(AgroReg)
resp=c(10,8,6.8,6,5,4.3,4.1,4.2,4.1)
trat=seq(1,9,1)
LOG(trat,resp)

Analysis: Logarithmic quadratic

Description

This function performs logarithmic quadratic regression analysis.

Usage

LOG2(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is c(0.3,0.8))

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The logarithmic model is defined by:

y=β0+β1ln(x)+β2ln(x)2y = \beta_0 + \beta_1 ln(\cdot x) + \beta_2 ln(\cdot x)^2

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

library(AgroReg)
resp=c(10,8,6.8,6,5,4.3,4.1,4.2,4.1)
trat=seq(1,9,1)
LOG2(trat,resp)

Analysis: Logistic

Description

Logistic models with three (L.3), four (L.4) or five (L.5) continuous data parameters. This model was extracted from the drc package.

Usage

logistic(
  trat,
  resp,
  npar = "L.3",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

Number of model parameters

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The three-parameter logistic function with lower limit 0 is

y=0+d1+exp(b(xe))y = 0 + \frac{d}{1+\exp(b(x-e))}

The four-parameter logistic function is given by the expression

y=c+dc1+exp(b(xe))y = c + \frac{d-c}{1+\exp(b(x-e))}

The five-parameter logistic function is given by the expression

y=c+dc1+exp(b(xe))fy = c + \frac{d-c}{1+\exp(b(x-e))^f}

The function is symmetric about the inflection point (e).

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Ritz, C.; Strebig, J.C.; Ritz, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
logistic(trat,resp)

Analysis: Lorentz

Description

Analysis: Lorentz

Usage

lorentz(
  trat,
  resp,
  npar = "lo3",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  error = "SE",
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

number of parameters (lo3 or lo4)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

error

Error bar (It can be SE - default, SD or FALSE)

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The model to the three-parameter Lorentz is:

y=fracd1+b(xe)2y = frac{d}{1+b(x-e)^2}

The model to the three-parameter Lorentz is:

y=c+fracdc1+b(xe)2y = c+frac{d-c}{1+b(x-e)^2}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Onofri, 2020)

Gabriel Danilo Shimizu

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Onofri A. (2020) The broken bridge between biologists and statisticians: a blog and R package, Statforbiology, IT, web: https://www.statforbiology.com

Examples

library(AgroReg)
data("granada")
attach(granada)
x=time[length(time):1]
lorentz(x,WL)

Analysis: Midilli

Description

This function performs Midilli regression analysis.

Usage

midilli(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

List starting estimates

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The exponential model is defined by:

y=α×eβxn+θxy = \alpha \times e^{-\beta \cdot x^n} + \theta \cdot x

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

library(AgroReg)
data("granada")
attach(granada)
midilli(time,100-WL)

Analysis: Modified Midilli

Description

This function performs modified Midilli regression analysis.

Usage

midillim(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

List starting estimates

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The exponential model is defined by:

y=α×eβx+θxy = \alpha \times e^{-\beta \cdot x} + \theta \cdot x

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

library(AgroReg)
data("granada")
attach(granada)
midillim(time,100-WL)

Analysis: Mitscherlich

Description

This function performs Mitscherlich regression analysis.

Usage

mitscherlich(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

List Initial parameters (A, b, e)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The Mitscherlich model is defined by:

y=A×(110ebex)y = A \times (1-10^{-eb-ex})

where "y" is the yield obtained when "b" units of a nutrient are in the soil and "x" units of it are added as fertilizer, "A" is the maximum yield, and "e" is the proportionality factor, has recently received increasing interest.

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
mitscherlich(time,WL)

Analysis: Michaelis-Menten

Description

This function performs regression analysis using the Michaelis-Menten model.

Usage

MM(
  trat,
  resp,
  npar = "mm2",
  sample.curve = 1000,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  point = "all",
  width.bar = NA,
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

Number of parameters (mm2 or mm3)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

error

Error bar (It can be SE - default, SD or FALSE)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

r2

coefficient of determination of the mean or all values (default is all)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The two-parameter Michaelis-Menten model is defined by:

y=Vm×xk+xy = \frac{Vm \times x}{k + x}

The three-parameter Michaelis-Menten model is defined by:

y=c+Vm×xk+xy = c + \frac{Vm \times x}{k + x}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

data("granada")
attach(granada)
MM(time,WL)
MM(time,WL,npar="mm3")

Analysis: Newton

Description

This function performs exponential regression analysis. This model was used by Newton.

Usage

newton(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The exponential model is defined by:

y=eβxxy = e^{-\beta \cdot x}\cdot x

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Siqueira, V. C., Resende, O., and Chaves, T. H. (2013). Mathematical modelling of the drying of jatropha fruit: an empirical comparison. Revista Ciencia Agronomica, 44, 278-285.

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
newton(trat,resp+0.001)

Analysis: Graph for not significant trend

Description

Graph for non-significant trend. Can be used within the multicurve command

Usage

Nreg(
  trat,
  resp,
  ylab = "Dependent",
  xlab = "Independent",
  error = "SE",
  theme = theme_classic(),
  legend.position = "top",
  legend.text = "not~significant",
  legend.add.mean = TRUE,
  legend.add.mean.name = "hat(y)",
  width.bar = NA,
  point = "all",
  textsize = 12,
  add.line = FALSE,
  add.line.mean = FALSE,
  linesize = 0.8,
  linetype = 1,
  pointsize = 4.5,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

ylab

Dependent variable name (Accepts the expression() function)

xlab

Independent variable name (Accepts the expression() function)

error

Error bar (It can be SE - default, SD or FALSE)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

legend.text

legend text

legend.add.mean

Add average in legend

legend.add.mean.name

Add media name

width.bar

Bar width

point

defines whether you want to plot all points ("all") or only the mean ("mean")

textsize

Font size

add.line

Add line

add.line.mean

Add line mean

linesize

line size

linetype

line type

pointsize

shape size

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

fontfamily

Font family

Value

The function returns an exploratory graph of segments

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
Nreg(trat,resp)

Analysis: Page

Description

This function performs exponential page regression analysis.

Usage

PAGE(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

Starting estimates

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The exponential model is defined by:

y=ekxny = e^{-k \cdot x^n}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

library(AgroReg)
data("granada")
attach(granada)
PAGE(time,100-WL)

Analysis: Peleg

Description

This function performs Peleg regression analysis.

Usage

peleg(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

Starting estimates

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The Peleg model is defined by:

y=(1x)a+bxy = \frac{(1-x)}{a+bx}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Examples

library(AgroReg)
data("granada")
attach(granada)
peleg(time,WL)

Analysis: Plateau-Linear

Description

This function performs the plateau-linear regression analysis.

Usage

plateau.linear(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

comment

Add text after equation

fontfamily

Font family

Details

The plateau-linear model is defined by: First curve:

y=β0+β1×breakpoint(x<breakpoint)y = \beta_0 + \beta_1 \times breakpoint (x < breakpoint)

Second curve:

y=β0+β1×x(x>breakpoint)y = \beta_0 + \beta_1 \times x (x > breakpoint)

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); breakpoint and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Chiu, G. S., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American Statistical Association 101:542-553.

Toms, J. D., and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.

See Also

quadratic.plateau, linear.linear

Examples

library(AgroReg)
data("granada")
attach(granada)
x=time[length(time):1]
plateau.linear(x,WL)

Analysis: Plateau-quadratic

Description

This function performs the plateau-quadratic regression analysis.

Usage

plateau.quadratic(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

plquadratic(x, a, breakpoint, b, c)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

x

Numeric vector with dependent variable.

a

The plateau value

breakpoint

breakpoint value

b

Linear term

c

Quadratic term

Details

The Plateau-quadratic model is defined by:

First curve:

y=β0+β1breakpoint+β2breakpoint2(x<breakpoint)y = \beta_0 + \beta_1 \cdot breakpoint + \beta_2 \cdot breakpoint^2 (x < breakpoint)

Second curve:

y=β0+β1x+β2x2(x>breakpoint)y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 (x > breakpoint)

or

y=a+b(x+breakpoint)+c(x+breakpoint)2(x>breakpoint)y = a + b(x+breakpoint) + c(x+breakpoint)^2 (x > breakpoint)

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Miguez, F. (2020). nlraa: nonlinear Regression for Agricultural Applications. R package version 0.65.

Chiu, G. S., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American Statistical Association 101:542-553.

Toms, J. D., and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.

See Also

linear.linear, linear.plateau

Examples

library(AgroReg)
data("granada")
attach(granada)
x=time[length(time):1]
plateau.quadratic(x,WL)

Merge multiple curves into a single graph

Description

Merge multiple curves into a single graph

Usage

plot_arrange(
  plots,
  point = "mean",
  theme = theme_classic(),
  legend.title = NULL,
  legend.position = "top",
  trat = NA,
  gray = FALSE,
  ylab = "Dependent",
  xlab = "Independent",
  widthbar = 0,
  pointsize = 4.5,
  linesize = 0.8,
  textsize = 12,
  legendsize = 12,
  legendtitlesize = 12,
  fontfamily = "sans"
)

Arguments

plots

list with objects of type analysis.

point

defines whether you want to plot all points ("all") or only the mean ("mean")

theme

ggplot2 theme (default is theme_classic())

legend.title

caption title

legend.position

legend position (default is c(0.3,0.8))

trat

name of the curves

gray

gray scale (default is FALSE)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

widthbar

bar width (default is 0.3)

pointsize

shape size

linesize

line size

textsize

Font size

legendsize

Legend size text

legendtitlesize

Title legend size

fontfamily

font family

Value

The function returns a graph joining the outputs of the functions LM_model, LL_model, BC_model, CD_model, loess_model, normal_model, piecewise_model and N_model

Author(s)

Gabriel Danilo Shimizu

Examples

library(AgroReg)
library(ggplot2)
data("aristolochia")
attach(aristolochia)
a=LM(trat,resp)
b=LL(trat,resp,npar = "LL.3")
plot_arrange(list(a,b))

models <- c("LM1", "LL3")
r <- lapply(models, function(x) {
r <- with(granada, regression(time, WL, model = x))
})
plot_arrange(r,trat=models,ylab="WL (%)",xlab="Time (Minutes)")

models = c("asymptotic_neg", "biexponential", "LL4", "BC4", "CD5", "linear.linear",
           "linear.plateau", "quadratic.plateau", "mitscherlich", "MM2")
m = lapply(models, function(x) {
           m = with(granada, regression(time, WL, model = x))})
           plot_arrange(m, trat = paste("(",models,")"))

Analysis: Potencial

Description

This function performs potencial regression analysis.

Usage

potential(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The exponential model is defined by:

y=α×tratβy = \alpha \times trat^{\beta}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Siqueira, V. C., Resende, O., & Chaves, T. H. (2013). Mathematical modelling of the drying of jatropha fruit: an empirical comparison. Revista Ciencia Agronomica, 44, 278-285.

Examples

library(AgroReg)
data("granada")
attach(granada)
potential(time,WL)

Analysis: Quadratic-plateau

Description

This function performs the quadratic-plateau regression analysis.

Usage

quadratic.plateau(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The quadratic-plateau model is defined by:

First curve:

y=β0+β1x+β2x2(x<breakpoint)y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 (x < breakpoint)

Second curve:

y=β0+β1breakpoint+β2breakpoint2(x>breakpoint)y = \beta_0 + \beta_1 \cdot breakpoint + \beta_2 \cdot breakpoint^2 (x > breakpoint)

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Chiu, G. S., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American Statistical Association 101:542-553.

Toms, J. D., and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.

See Also

linear.linear, linear.plateau

Examples

library(AgroReg)
data("granada")
attach(granada)
quadratic.plateau(time,WL)

Analysis: Regression linear or nonlinear

Description

This function is a simplification of all the analysis functions present in the package.

Usage

regression(
  trat,
  resp,
  model = "LM1",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  point = "all",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  pointshape = 21,
  round = NA,
  fontfamily = "sans",
  error = "SE",
  width.bar = NA,
  xname.formula = "x",
  yname.formula = "y"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

model

model regression (default is LM1)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is c(0.3,0.8))

point

defines whether you want to plot all points ("all") or only the mean ("mean")

textsize

Font size

pointsize

shape size

linesize

line size

pointshape

format point (default is 21)

round

round equation

fontfamily

Font family

error

Error bar (It can be SE - default, SD or FALSE)

width.bar

Bar width

xname.formula

Name of x in the equation

yname.formula

Name of y in the equation

Details

To change the regression model, change the "model" argument to:

  1. N: Graph for not significant trend.

  2. loess0: Loess non-parametric degree 0

  3. loess1: Loess non-parametric degree 1

  4. loess2: Loess non-parametric degree 2

  5. LM0.5: Quadratic inverse

  6. LM1: Linear regression.

  7. LM2: Quadratic

  8. LM3: Cubic

  9. LM4: Quartic

  10. LM0.5_i: Quadratic inverse without intercept.

  11. LM1_i: Linear without intercept.

  12. LM2_i: Quadratic regression without intercept.

  13. LM3_i: Cubic without intercept.

  14. LM4_i: Quartic without intercept.

  15. LM13: Cubic without beta2

  16. LM13i: Cubic inverse without beta2

  17. LM23: Cubic without beta1

  18. LM23i: Cubic inverse without beta2

  19. LM2i3: Cubic without beta1, with inverse beta3

  20. valcam: Valcam

  21. L3: Three-parameter logistics.

  22. L4: Four-parameter logistics.

  23. L5: Five-parameter logistics.

  24. LL3: Three-parameter log-logistics.

  25. LL4: Four-parameter log-logistics.

  26. LL5: Five-parameter log-logistics.

  27. BC4: Brain-Cousens with four parameter.

  28. BC5: Brain-Cousens with five parameter.

  29. CD4: Cedergreen-Ritz-Streibig with four parameter.

  30. CD5: Cedergreen-Ritz-Streibig with five parameter.

  31. weibull3: Weibull with three parameter.

  32. weibull4: Weibull with four parameter.

  33. GP2: Gompertz with two parameter.

  34. GP3: Gompertz with three parameter.

  35. GP4: Gompertz with four parameter.

  36. VB: Von Bertalanffy

  37. lo3: Lorentz with three parameter

  38. lo4: Lorentz with four parameter

  39. beta: Beta

  40. gaussian3: Analogous to the Gaussian model/Bragg with three parameters.

  41. gaussian4: Analogous to the Gaussian model/Bragg with four parameters.

  42. linear.linear: Linear-linear

  43. linear.plateau: Linear-plateau

  44. quadratic.plateau: Quadratic-plateau

  45. plateau.linear: Plateau-linear

  46. plateau.quadratic: Plateau-Quadratic

  47. log: Logarithmic

  48. log2: Logarithmic quadratic

  49. thompson: Thompson

  50. asymptotic: Exponential

  51. asymptotic_neg: Exponential negative

  52. asymptotic_i: Exponential without intercept.

  53. asymptotic_ineg: Exponential negative without intercept.

  54. biexponential: Biexponential

  55. mitscherlich: Mitscherlich

  56. yieldloss: Yield-loss

  57. hill: Hill

  58. MM2: Michaelis-Menten with two parameter.

  59. MM3: Michaelis-Menten with three parameter.

  60. SH: Steinhart-Hart

  61. page: Page

  62. newton: Newton

  63. potential: Potential

  64. midilli: Midilli

  65. midillim: Modified Midilli

  66. AM: Avhad and Marchetti

  67. peleg: Peleg

  68. VG: Vega-Galvez

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
regression(trat, resp)

Analysis: Steinhart-Hart

Description

The Steinhart-Hart model. The Steinhart-Hart equation is a model used to explain the behavior of a semiconductor at different temperatures, however, Zhai et al. (2020) used this model to relate plant density and grain yield.

Usage

SH(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

Starting estimates

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

Legend position (default is "top")

r2

Coefficient of determination of the mean or all values (default is all)

error

Error bar (It can be SE - default, SD or FALSE)

point

Defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

Shape size

linesize

Line size

linetype

line type

pointshape

Format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The model function for the Steinhart-Hart model is:

y=1A+B×ln(x)+C×ln(x)3y = \frac{1}{A+B \times ln(x)+C \times ln(x)^3}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Zhai, L., Li, H., Song, S., Zhai, L., Ming, B., Li, S., ... & Zhang, L. (2021). Intra-specific competition affects the density tolerance and grain yield of maize hybrids. Agronomy Journal, 113(1), 224-23. doi:10.1002/agj2.20438

See Also

LL, CD,GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
SH(trat,resp)

Analysis: Other statistical parameters

Description

This function calculates other statistical parameters such as Mean (Bias) Error, Relative Mean (Bias) Error, Mean Absolute Error, Relative Mean Absolute Error, Root Mean Square Error, Relative Root Mean Square Error, Modeling Efficiency, Standard deviation of differences, Coefficient of Residual Mass.

Usage

stat_param(models, names_model = NA, round = 3)

Arguments

models

List with objects of type analysis

names_model

Names of the models

round

Round numbers

Value

Returns a table with the statistical parameters for choosing the model.

Author(s)

Gabriel Danilo Shimizu

Examples

library(AgroReg)
data(granada)
attach(granada)
a=LM(time,WL)
b=LL(time,WL)
c=BC(time,WL)
d=weibull(time,WL)
stat_param(models=list(a,b,c,d))

Analysis: Thompson

Description

This function performs Thompson regression analysis.

Usage

thompson(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is c(0.3,0.8))

error

Error bar (It can be SE - default, SD or FALSE)

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The logarithmic model is defined by:

y=β1ln(x)+β2ln(x)2y = \beta_1 ln(\cdot x) + \beta_2 ln(\cdot x)^2

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Sadeghi, E., Haghighi Asl, A., & Movagharnejad, K. (2019). Mathematical modelling of infrared-dried kiwifruit slices under natural and forced convection. Food science & nutrition, 7(11), 3589-3606.

Examples

library(AgroReg)
resp=c(10,8,6.8,6,5,4.3,4.1,4.2,4.1)
trat=seq(1,9,1)
thompson(trat,resp)

Analysis: Valcam

Description

This function performs Valcam regression analysis.

Usage

valcam(
  trat,
  resp,
  sample.curve = 1000,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "mean",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

error

Error bar (It can be SE - default, SD or FALSE)

ylab

Dependent variable name (Accepts the expression() function)

xlab

Independent variable name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The Valcam model is defined by:

y=β0+β1x+β2x1.5+β3x2y = \beta_0 + \beta_1\cdot x + \beta_2\cdot x^1.5 + \beta_3\cdot x^2

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Siqueira, V. C., Resende, O., & Chaves, T. H. (2013). Mathematical modelling of the drying of jatropha fruit: an empirical comparison. Revista Ciencia Agronomica, 44, 278-285.

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
valcam(trat,resp)

Analysis: Von Bertalanffy

Description

The Von Bertalanffy model. It's a kind of growth curve for a time series and takes its name from its creator, Ludwig von Bertalanffy. It is a special case of the generalized logistic function. The growth curve (biology) is used to model the average length from age in animals.

Usage

VB(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

initial

Starting estimates

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

Legend position (default is "top")

r2

Coefficient of determination of the mean or all values (default is all)

error

Error bar (It can be SE - default, SD or FALSE)

point

Defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

Shape size

linesize

Line size

linetype

line type

pointshape

Format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The model function for the von Bertalanffy model is:

y=L(1exp(k(tt0)))y = L(1-exp(-k(t-t0)))

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
x=seq(1,20)
y=c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.91,
    0.92, 0.94, 0.96, 0.98, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
VB(x,y)

Analysis: Vega-Galvez

Description

This function performs Vega-Galvez regression analysis.

Usage

VG(
  trat,
  resp,
  sample.curve = 1000,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "mean",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

error

Error bar (It can be SE - default, SD or FALSE)

ylab

Dependent variable name (Accepts the expression() function)

xlab

Independent variable name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_classic())

legend.position

legend position (default is "top")

r2

coefficient of determination of the mean or all values (default is all)

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The Vega-Galvez model is defined by:

y=β0+β1(x)y = \beta_0 + \beta_1 (\sqrt{x})

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Sadeghi, E., Haghighi Asl, A., and Movagharnejad, K. (2019). Mathematical modelling of infrared-dried kiwifruit slices under natural and forced convection. Food science & nutrition, 7(11), 3589-3606.

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
VG(trat,resp)

Analysis: Weibull

Description

The w3' and 'w4' logistical models provide Weibull. This model was extracted from the 'drc' package.

Usage

weibull(
  trat,
  resp,
  npar = "w3",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

npar

Number of model parameters (default is w3)

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

Legend position (default is "top")

r2

Coefficient of determination of the mean or all values (default is all)

ic

Add interval of confidence

fill.ic

Color interval of confidence

alpha.ic

confidence interval transparency level

error

Error bar (It can be SE - default, SD or FALSE)

point

Defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

scale

Sets x scale (default is none, can be "log")

textsize

Font size

pointsize

Shape size

linesize

Line size

linetype

line type

pointshape

Format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

fontfamily

Font family

Details

The three-parameter Weibull model is given by the expression

y=dexp(exp(b(log(x)e)))y = d\exp(-\exp(b(\log(x)-e)))

Fixing the lower limit at 0 yields the four-parameter model

y=c+(dc)(1exp(exp(b(log(x)log(e)))))y = c + (d-c) (1 - \exp(-\exp(b(\log(x)-\log(e)))))

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Ritz, C.; Strebig, J.C. and Ritz, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.

See Also

LL, CD,GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
weibull(trat,resp)

Analysis: Yield-loss

Description

This function performs regression analysis using the Yield loss model.

Usage

yieldloss(
  trat,
  resp,
  sample.curve = 1000,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  point = "all",
  width.bar = NA,
  r2 = "all",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  scale = "none",
  fontfamily = "sans"
)

Arguments

trat

Numeric vector with dependent variable.

resp

Numeric vector with independent variable.

sample.curve

Provide the number of observations to simulate curvature (default is 1000)

error

Error bar (It can be SE - default, SD or FALSE)

ylab

Variable response name (Accepts the expression() function)

xlab

treatments name (Accepts the expression() function)

theme

ggplot2 theme (default is theme_bw())

legend.position

legend position (default is "top")

point

defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar

Bar width

r2

coefficient of determination of the mean or all values (default is all)

textsize

Font size

pointsize

shape size

linesize

line size

linetype

line type

pointshape

format point (default is 21)

fillshape

Fill shape

colorline

Color lines

round

round equation

yname.formula

Name of y in the equation

xname.formula

Name of x in the equation

comment

Add text after equation

scale

Sets x scale (default is none, can be "log")

fontfamily

Font family

Details

The Yield Loss model is defined by:

y=i×x1+iA×xy = \frac{i \times x}{1+\frac{i}{A} \times x}

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Onofri, 2020)

Gabriel Danilo Shimizu

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).

Onofri A. (2020) The broken bridge between biologists and statisticians: a blog and R package, Statforbiology, IT, web: https://www.statforbiology.com

Examples

data("granada")
attach(granada)
yieldloss(time,WL)